Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 318, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008756

RESUMO

BACKGROUND: TGFß induces several cell phenotypes including senescence, a stable cell cycle arrest accompanied by a secretory program, and epithelial-mesenchymal transition (EMT) in normal epithelial cells. During carcinogenesis cells lose the ability to undergo senescence in response to TGFß but they maintain an EMT, which can contribute to tumor progression. Our aim was to identify mechanisms promoting TGFß-induced senescence escape. METHODS: In vitro experiments were performed with primary human mammary epithelial cells (HMEC) immortalized by hTert. For kinase library screen and modulation of gene expression retroviral transduction was used. To characterize gene expression, RNA microarray with GSEA analysis and RT-qPCR were used. For protein level and localization, Western blot and immunofluorescence were performed. For senescence characterization crystal violet assay, Senescence Associated-ß-Galactosidase activity, EdU staining were conducted. To determine RSK3 partners FLAG-baited immunoprecipitation and mass spectrometry-based proteomic analyses were performed. Proteosome activity and proteasome enrichment assays were performed. To validate the role of RSK3 in human breast cancer, analysis of METABRIC database was performed. Murine intraductal xenografts using MCF10DCIS.com cells were carried out, with histological and immunofluorescence analysis of mouse tissue sections. RESULTS: A screen with active kinases in HMECs upon TGFß treatment identified that the serine threonine kinase RSK3, or RPS6KA2, a kinase mainly known to regulate cancer cell death including in breast cancer, reverted TGFß-induced senescence. Interestingly, RSK3 expression decreased in response to TGFß in a SMAD3-dependent manner, and its constitutive expression rescued SMAD3-induced senescence, indicating that a decrease in RSK3 itself contributes to TGFß-induced senescence. Using transcriptomic analyses and affinity purification coupled to mass spectrometry-based proteomics, we unveiled that RSK3 regulates senescence by inhibiting the NF-κΒ pathway through the decrease in proteasome-mediated IκBα degradation. Strikingly, senescent TGFß-treated HMECs display features of epithelial to mesenchymal transition (EMT) and during RSK3-induced senescence escaped HMECs conserve EMT features. Importantly, RSK3 expression is correlated with EMT and invasion, and inversely correlated with senescence and NF-κΒ in human claudin-low breast tumors and its expression enhances the formation of breast invasive tumors in the mouse mammary gland. CONCLUSIONS: We conclude that RSK3 switches cell fate from senescence to malignancy in response to TGFß signaling.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
2.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncogene ; 40(23): 4019-4032, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012098

RESUMO

Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Dinamina II/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular , Movimento Celular/fisiologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Oncol ; 10: 283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292715

RESUMO

Bladder cancer (BC) is the ninth most common cancer worldwide, but molecular changes are still under study. During tumor progression, Epithelial cadherin (E-cadherin) expression is altered and ß-catenin may be translocated to the nucleus, where it acts as co-transcription factor of tumor invasion associated genes. This investigation further characterizes E-cadherin and ß-catenin associated changes in BC, by combining bioinformatics, an experimental murine cell model (MB49/MB49-I) and human BC samples. In in silico studies, a DisGeNET (gene-disease associations database) analysis identified CDH1 (E-cadherin gene) as one with highest score among 130 BC related-genes. COSMIC mutation analysis revealed CDH1 low mutations rates. Compared to MB49 control BC cells, MB49-I invasive cells showed decreased E-cadherin expression, E- to P-cadherin switch, higher ß-catenin nuclear signal and lower cytoplasmic p-Ser33-ß-catenin signal, higher Ephrin-B1 ligand and EphB2 receptor expression, higher Phospho-Stat3 and Urokinase-type Plasminogen Activator (UPA), and UPA receptor expression. MB49-I cells transfected with Ephrin-B1 siRNA showed lower migratory and invasive capacity than control cells (scramble siRNA). By immunohistochemistry, orthotopic MB49-I tumors had lower E-cadherin, increased nuclear ß-catenin, lower pSer33-ß-catenin cytoplasmic signal, and higher Ephrin-B1 expression than MB49 tumors. Similar changes were found in human BC tumors, and 83% of infiltrating tumors depicted a high Ephrin-B1 stain. An association between higher Ephrin-B1 expression and higher stage and tumor grade was found. No association was found between abnormal E-cadherin signal, Ephrin-B1 expression or clinical-pathological parameter. This study thoroughly analyzed E-cadherin and associated changes in BC, and reports Ephrin-B1 as a new marker of tumor aggressiveness.

5.
Nitric Oxide ; 98: 50-59, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147582

RESUMO

BACKGROUND: Bacillus Calmette-Guerin (BCG) is the standard treatment for patients with high-risk non-muscle invasive bladder cancer (BC). Despite its success, about 30-50% of patients are refractory. It was reported that inducible nitric oxide synthase (iNOS) tumor expression is presented in 50% of human BC, associated with bad prognosis and BCG failure. OBJECTIVE: to evaluate in human bladder tumors the association between iNOS expression and the tumor microenvironment focusing on the immunosuppressive protein S100A9. Also, investigate in a preclinical murine MB49-BC model the tumor immunoresponse induced by BCG in combination with the nitric oxide production inhibitor l-NAME. RESULTS: In human bladder tumors, we detected a positive association between iNOS and S100A9 tumor expression, suggesting a relationship between both immunomodulatory proteins. We also found a positive correlation between iNOS tumor expression and the presence of S100A9+ tumor-infiltrating cells, suggesting an immunosuppressive tumor microenvironment induced by the nitric oxide production. Using the subcutaneous murine BC model, we show that similarly to the human pathology, MB49 tumors constitutively expressed iNOS and S100A9 protein. MB49 tumor-bearing mice presented an immunosuppressive systemic profile characterized by fewer cytotoxic cells (CD8+ and NK) and higher suppressor cells (Treg and myeloid-derived suppressor cells -MDSC-) compared to normal mice. BCG treatment reduced tumor growth, increasing local CD8+-infiltrating cells and induced a systemic increase in CD8+ and a reduction in Treg. BCG combined with l-NAME, significantly reduced tumor growth compared to BCG alone, diminishing iNOS and S100A9 tumor expression and increasing CD8+-infiltrating cells in tumor microenvironment. This local response was accompanied by the systemic increase in CD8+ and NK cells, and the reduction in Treg and MDSC, even more than BCG alone. Similar results were obtained using the orthotopic BC model, where an increase in specific cytotoxicity against MB49 tumor cells was detected. CONCLUSION: The present study provides preclinical information where NO inhibition in iNOS-expressing bladder tumors could contribute to improve BCG antitumor immune response. The association between iNOS and S100A9 in human BC supports the hypothesis that iNOS expression is a negative prognostic factor and a promising therapeutic target.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Vacina BCG/farmacologia , Óxido Nítrico/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Adjuvantes Imunológicos/administração & dosagem , Animais , Antineoplásicos Imunológicos/administração & dosagem , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Calgranulina B/biossíntese , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
6.
Nitric Oxide ; 93: 34-43, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542422

RESUMO

Nitric Oxide (NO) is involved in many physiological and pathological processes. It is generated by a family of NO synthases (NOS), being the inducible isoform, iNOS, responsible for higher amounts of NO. Here, we report that pharmacological inhibition of NO production by l-NAME reduces both viability and MAPK activated signalling pathways in iNOS positive human and murine cancer cell lines. In vivo, using syngeneic models, in parallel with tumor reduction induced by l-NAME, collagen deposition and α-SMA positive stromal cells are observed. This observation takes place only when tumor cells express iNOS. In vitro, l-NAME induces viability and differentiation on fibroblast. Our results reveal that NO inhibition contributes to stimulate proliferation and activation of fibroblasts in parallel with tumor reduction of iNOS positive breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Fibroblastos/efeitos dos fármacos , NG-Nitroarginina Metil Éster/uso terapêutico , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncogene ; 37(50): 6425-6441, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30065298

RESUMO

Membrane type 1-matrix metalloproteinase (MT1-MMP), a membrane-tethered protease, is key for matrix breakdown during cancer invasion and metastasis. Assembly of branched actin networks by the Arp2/3 complex is required for MT1-MMP traffic and formation of matrix-degradative invadopodia. Contrasting with the well-established role of actin filament branching factor cortactin in invadopodia function during cancer cell invasion, the contribution of coronin-family debranching factors to invadopodia-based matrix remodeling is not known. Here, we investigated the contribution of coronin 1C to the invasive potential of breast cancer cells. We report that expression of coronin 1C is elevated in invasive human breast cancers, correlates positively with MT1-MMP expression in relation with increased metastatic risk and is a new independent prognostic factor in breast cancer. We provide evidence that, akin to cortactin, coronin 1C is required for invadopodia formation and matrix degradation by breast cancer cells lines and for 3D collagen invasion by multicellular spheroids. Using intravital imaging of orthotopic human breast tumor xenografts, we find that coronin 1C accumulates in structures forming in association with collagen fibrils in the tumor microenvironment. Moreover, we establish the role of coronin 1C in the regulation of positioning and trafficking of MT1-MMP-positive endolysosomes. These results identify coronin 1C as a novel player of the multi-faceted mechanism responsible for invadopodia formation, MT1-MMP surface exposure and invasiveness in breast cancer cells.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podossomos/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica/patologia , Podossomos/patologia , Transporte Proteico/fisiologia , Esferoides Celulares , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Annu Rev Cell Dev Biol ; 32: 555-576, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501444

RESUMO

Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Polaridade Celular , Humanos , Modelos Biológicos , Invasividade Neoplásica , Podossomos/metabolismo
9.
Breast Cancer Res ; 18(1): 23, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26887652

RESUMO

BACKGROUND: Polarity defects are a hallmark of most carcinomas. Cells from invasive micropapillary carcinomas (IMPCs) of the breast are characterized by a striking cell polarity inversion and represent an interesting model for the analysis of polarity abnormalities. METHODS: In-depth investigation of polarity proteins in 24 IMPCs and a gene expression profiling, comparing IMPC (n = 73) with invasive carcinomas of no special type (ICNST) (n = 51) have been performed. RESULTS: IMPCs showed a profound disorganization of the investigated polarity proteins and revealed major abnormalities in their subcellular localization. Gene expression profiling experiments highlighted a number of deregulated genes in the IMPCs that have a role in apico-basal polarity, adhesion and migration. LIN7A, a Crumbs-complex polarity gene, was one of the most differentially over-expressed genes in the IMPCs. Upon LIN7A over-expression, we observed hyperproliferation, invasion and a complete absence of lumen formation, revealing strong polarity defects. CONCLUSION: This study therefore shows that LIN7A has a crucial role in the polarity abnormalities associated with breast carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Polaridade Celular/genética , Proteínas de Membrana/biossíntese , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Proteínas de Membrana/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Transporte Vesicular
10.
Intravital ; 5(1): e1112476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28243516

RESUMO

Extracellular vesicles (EVs) are lipid-bilayer-enclosed vesicles that contain proteins, lipids and nucleic acids. EVs produced by cells from healthy tissues circulate in the blood and body fluids, and can be taken up by unrelated cells. As they have the capacity to transfer cargo proteins, lipids and nucleic acids (mostly mRNAs and miRNAs) between different cells in the body, EVs are emerging as mediators of intercellular communication that could modulate cell behavior, tissue homeostasis and regulation of physiological functions. EV-mediated cell-cell communications are also proposed to play a role in disease, for example, cancer, where they could contribute to transfer of traits required for tumor progression and metastasis. However, direct evidence for EV-mediated mRNA transfer to individual cells and for its biological consequences in vivo has been missing until recently. Recent studies have reported elegant experiments using genetic tracing with the Cre recombinase system and intravital imaging that visualize and quantify functional transfer of mRNA mediated by EVs in the context of cancer and metastasis.

11.
J Cell Biol ; 211(2): 339-58, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26504170

RESUMO

Invasion of cancer cells into collagen-rich extracellular matrix requires membrane-tethered membrane type 1-matrix metalloproteinase (MT1-MMP) as the key protease for collagen breakdown. Understanding how MT1-MMP is delivered to the surface of tumor cells is essential for cancer cell biology. In this study, we identify ARF6 together with c-Jun NH2-terminal kinase-interacting protein 3 and 4 (JIP3 and JIP4) effectors as critical regulators of this process. Silencing ARF6 or JIP3/JIP4 in breast tumor cells results in MT1-MMP endosome mispositioning and reduces MT1-MMP exocytosis and tumor cell invasion. JIPs are recruited by Wiskott-Aldrich syndrome protein and scar homologue (WASH) on MT1-MMP endosomes on which they recruit dynein-dynactin and kinesin-1. The interaction of plasma membrane ARF6 with endosomal JIPs coordinates dynactin-dynein and kinesin-1 activity in a tug-of-war mechanism, leading to MT1-MMP endosome tubulation and exocytosis. In addition, we find that ARF6, MT1-MMP, and kinesin-1 are up-regulated in high-grade triple-negative breast cancers. These data identify a critical ARF6-JIP-MT1-MMP-dynein-dynactin-kinesin-1 axis promoting an invasive phenotype of breast cancer cells.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Colágeno/metabolismo , Endossomos/metabolismo , Exocitose/fisiologia , Feminino , Células HEK293 , Humanos , Cinesinas/metabolismo , Metaloproteinase 14 da Matriz/genética , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Esferoides Celulares , Células Tumorais Cultivadas
12.
J Cancer Res Clin Oncol ; 141(10): 1727-38, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25687381

RESUMO

INTRODUCTION: LM38 murine mammary adenocarcinoma model is formed by LM38-LP (myoepithelial and luminal), LM38-HP (luminal) and LM38-D2 (myoepithelial) cell lines. In a previous work, we had shown that LM38-HP and LM38-D2 cell lines are less malignant than the bicellular LM38-LP cell line. PURPOSE: To study the role of nitric oxide (NO) as one of the mediators of functional interactions between malignant luminal and myoepithelial cells. METHODS AND RESULTS: Using immunohistochemistry, in vivo iNOS expression was only detected in the luminal cells of bicellular LM38-LP and most cells of LM38-HP tumors. In cobalt-induced pseudohypoxia, LM38-LP and LM38-HP cell lines significantly increased HIF-1α and iNOS expression (Western blotting) and therefore NO production (Griess method). This increase was inhibited by the iNOS inhibitor 1400 W. On the other side, NO was not detectable in LM38-D2 cells either in basal or in pseudohypoxia. In addition, pseudohypoxia increased urokinase-type plasminogen activator (uPA) secretion by LM38-LP and LM38-HP cells and migration in the LM38-LP cell line, without modulating these properties in LM38-D2 cells (radial caseinolysis). The NO donor DETA/NONOate (500 µM) was able to increase uPA secretion and in vitro growth of LM38-D2. In agreement, 1400 W prevented in vivo growth of the myoepithelial LM38-D2 cells. CONCLUSIONS: Hypoxia leads to an enhanced NO production by the luminal component, through HIF-1α and iNOS, which can stimulate myoepithelial cell proliferation and uPA secretion. In these new conditions, myoepithelial cells might act as an invasive forefront generating gaps that could help luminal cells to escape from the primary tumor.


Assuntos
Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Hipóxia/patologia , Neoplasias Mamárias Experimentais/patologia , Óxido Nítrico/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Movimento Celular/fisiologia , Modelos Animais de Doenças , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Células Tumorais Cultivadas
13.
Proc Natl Acad Sci U S A ; 111(18): E1872-9, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753582

RESUMO

Dissemination of carcinoma cells requires the pericellular degradation of the extracellular matrix, which is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP). In this article, we report a co-up-regulation and colocalization of MT1-MMP and atypical protein kinase C iota (aPKCι) in hormone receptor-negative breast tumors in association with a higher risk of metastasis. Silencing of aPKC in invasive breast-tumor cell lines impaired the delivery of MT1-MMP from late endocytic storage compartments to the surface and inhibited matrix degradation and invasion. We provide evidence that aPKCι, in association with MT1-MMP-containing endosomes, phosphorylates cortactin, which is present in F-actin-rich puncta on MT1-MMP-positive endosomes and regulates cortactin association with the membrane scission protein dynamin-2. Thus, cell line-based observations and clinical data reveal the concerted activity of aPKC, cortactin, and dynamin-2, which control the trafficking of MT1-MMP from late endosome to the plasma membrane and play an important role in the invasive potential of breast-cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Isoenzimas/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteína Quinase C/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Transporte Biológico Ativo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Cortactina/metabolismo , Grânulos Citoplasmáticos/metabolismo , Progressão da Doença , Dinamina II/metabolismo , Endossomos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Metaloproteinase 14 da Matriz/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Regulação para Cima
14.
EMBO Mol Med ; 5(12): 1835-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24142880

RESUMO

Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.


Assuntos
Decorina/metabolismo , Imunidade Adaptativa , Animais , Linhagem Celular Tumoral , Movimento Celular , Citocinas/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Decorina/antagonistas & inibidores , Decorina/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
15.
J Urol ; 188(6): 2384-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23088980

RESUMO

PURPOSE: We evaluated the effects of combined PPARg agonist with bacillus Calmette-Guérin in bladder cancer growth in vitro and in vivo, focusing on the tissue remodeling mechanisms induced by bacillus Calmette-Guérin. MATERIALS AND METHODS: PPARs are a superfamily of nuclear receptors that are transcription factors activated by ligands. Activation of PPARg, the γ subtype, causes proliferation inhibition or differentiation of tumor cells. Previously, we reported that the inhibition of murine bladder tumor growth induced by bacillus Calmette-Guérin, which is the standard treatment for patients with nonmuscle invasive, high grade bladder cancer, increased PPARg expression in vitro and in vivo. In vitro the cell growth inhibition induced by bacillus Calmette-Guérin was enhanced by the PPARg agonist 15-d-PGJ2, raising the possibility that PPARg activation may be a therapeutic modality for this disease. RESULTS: In MB49 cells bacillus Calmette-Guérin and 15-d-PGJ2 induced PPARg expression, nuclear translocation and transcriptional activity. In vivo bacillus Calmette-Guérin reduced tumor size, an effect that was partially reversed when bacillus Calmette-Guérin was combined with the PPARg agonist rosiglitazone. The same result was found when we analyzed the effect of the PPARg antagonist BADGE (Fluka Chemical, Buchs, Switzerland) combined with bacillus Calmette-Guérin. Analysis of the activation of macrophages and fibroblasts demonstrated that rosiglitazone inhibited the tissue remodeling mechanisms induced by bacillus Calmette-Guérin. CONCLUSIONS: Results suggest that PPARg is involved in the antitumor action of bacillus Calmette-Guérin. However, exogenous PPARg agonists would not be a favorable therapeutic modality because they can inhibit the tissue remodeling needed for an overall satisfactory bacillus Calmette-Guérin response.


Assuntos
Mycobacterium bovis , PPAR gama/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Administração Intravesical , Análise de Variância , Animais , Western Blotting , Linhagem Celular Tumoral/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , PPAR gama/genética , Valores de Referência , Rosiglitazona , Sensibilidade e Especificidade , Carga Tumoral/efeitos dos fármacos
16.
J Urol ; 188(3): 967-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22819108

RESUMO

PURPOSE: We evaluated the role of inducible nitric oxide synthase and PPARγ as prognostic factors for bladder cancer. MATERIALS AND METHODS: Inducible nitric oxide synthase and PPARγ were evaluated by Western blot and immunohistochemistry in a mouse bladder cancer model of nonmuscle invasive and invasive MB49-I tumor cells, and in human bladder cancer samples. RESULTS: Inducible nitric oxide synthase expression was negative in mouse normal urothelium and higher in invasive than in noninvasive MB49 tumors. In vitro inducible nitric oxide synthase activity, determined as nitrite, was higher in MB49-I than in MB49 cells (p <0.001). In human samples expression was also associated with tumor invasion. Nuclear PPARγ expression was negative in normal mouse urothelium but higher in nonmuscle invasive MB49 than in MB49-I tumors. Similarly in human tumors low PPARγ was associated with poor prognosis factors, such as high histological grade (p = 0.0160) and invasion status (p = 0.0352). A positive correlation was noted between inducible nitric oxide synthase and PPARγ in low histological grade and nonmuscle invasive tumors (Pearson correlation index 0.6368, p = 0.0351, 0.4438 and 0.0168, respectively). As determined by gene reporter assay, PPARγ activity was induced by nitric oxide only in nonmuscle invasive MB49 cells (p <0.001). CONCLUSIONS: Results suggest that increased PPARγ controls inducible nitric oxide synthase expression at early tumor stages. However, regulation is lost at advanced tumor stages, when the increase in inducible nitric oxide synthase and the decrease in PPARγ seem to be associated with bladder cancer progression.


Assuntos
Óxido Nítrico Sintase Tipo II/fisiologia , PPAR gama/fisiologia , Neoplasias da Bexiga Urinária/etiologia , Animais , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Neoplasias da Bexiga Urinária/patologia
17.
Cancer Genet ; 205(4): 168-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559978

RESUMO

Bladder cancer is frequently associated with chromosomal abnormalities, and the complexity of karyotypes increases with tumor progression. The murine model MB49 is one of the most widely studied models of bladder cancer. We developed the invasive cell line MB49-I by successive in vivo passages of MB49 primary tumors. Because little is known about the chromosomal alterations of this model, our goal was to perform cytogenetic analyses of the MB49 and MB49-I lines. The karyotypes of both lines were analyzed by G-banding and fluorescence in situ hybridization techniques. Both lines were composed of two cell subpopulations, a diploid population, which was found mainly in the MB49 line, and the tetraploid population, which was found mainly in the MB49-I line. A translocation between chromosomes 5 and 9 and an isochromosome of chromosome 19 were observed in the subpopulations of both lines. New structural abnormalities and additional chromosomal imbalances were detected in the MB49-I line. Tumor progression in the MB49/MB49-I model was associated with a selection of polyploid cells with accompanying chromosomal abnormalities. This model may be advantageous for the study of the genetic changes associated with the progression of bladder cancer.


Assuntos
Linhagem Celular Tumoral , Aberrações Cromossômicas , Modelos Animais de Doenças , Neoplasias da Bexiga Urinária/genética , Animais , Bandeamento Cromossômico , Cromossomos de Mamíferos/genética , Análise Citogenética , Progressão da Doença , Hibridização in Situ Fluorescente , Cariotipagem , Camundongos , Deleção de Sequência , Translocação Genética , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
18.
PLoS One ; 5(10): e13571, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21042580

RESUMO

BACKGROUND: Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy.


Assuntos
Vacina BCG/imunologia , Modelos Animais de Doenças , Macrófagos Peritoneais/imunologia , Neoplasias da Bexiga Urinária/patologia , Animais , Diferenciação Celular , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fibroblastos/citologia , Fibroblastos/imunologia , Camundongos , Células NIH 3T3 , Óxido Nítrico/antagonistas & inibidores , Neoplasias da Bexiga Urinária/imunologia
19.
J Urol ; 182(2): 749-55, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19539312

RESUMO

PURPOSE: We developed and characterized an orthotopic invasive bladder tumor model. MATERIAL AND METHODS: The MB49-I invasive bladder tumor cell line was obtained after 13 consecutive in vivo passages of primary tumor obtained by subcutaneous inoculation of MB49 bladder tumor cells in C57Bl/6J male mice. RESULTS: MB49-I tumor local invasiveness, tumor weight and spontaneous metastatic capacity were higher than in MB49 tumors. In MB49-I bladder tumors increased vimentin was observed, suggesting epithelial mesenchymal transition. In vitro the MB49-I cell line showed higher invasive properties associated with an increase in cathepsin B, metalloproteinase 9 and urokinase-type plasminogen activator proteolytic activities. Orthotopic bladder tumors induced by electrocautery of the bladder wall and subsequent instillation of MB49 and MB49-I bladder cancer cells generated superficial and invasive bladder tumors, respectively. CONCLUSIONS: The new murine bladder model described resembles human bladder disease, making it a useful tool for studying the molecular mechanisms of tumor progression and metastasis, and assaying antimetastatic and anti-invasive agents.


Assuntos
Catepsina B/fisiologia , Modelos Animais de Doenças , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica
20.
Int J Mol Med ; 20(6): 823-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17982689

RESUMO

Bacillus Calmette-Guérin (BCG) is the most effective treatment for superficial and in situ transitional bladder cancer. Although the complete mechanisms for its effect are not fully understood yet, both immunological and direct effects on tumor cells have been proposed. It has been proposed that apoptotic tumor cells could be better inducers of immunity than necrotic ones. Thus, apoptosis of bladder cancer cells could contribute to a global response to BCG. Lysosomal hydrolase cathepsin B (CB) is involved in the apoptotic process and has a key role in breast cancer cell programmed death through the activation of a pro-apoptotic protein BID. Truncated BID participates in the mitochondrial apoptotic pathway that involves the activation of pro-caspase 9. The possibility that CB can be involved in apoptosis of TCC line has not been explored yet. Therefore, we analyzed the participation of CB in BCG-induced apoptosis of human and murine TCC lines. Apoptosis was evaluated by a morphologic assay and CB activity by a substrate-specific colorimetric method. Expression of CB, BID and pro-caspase 9 was determined by Western blotting. BCG induced apoptosis of murine (MBT2, MB49) and human (T24) TCC lines. An increase in both CB activity and protein was also observed. The apoptosis of T24 and MB49 cell lines was mediated by activation of pro-caspase 9 and BID, both proteins are involved in mitochondrial apoptosis. Apoptosis and activation of pro-caspase 9 and BID were inhibited by CA-074Me (CA), a cell permeable CB inhibitor. Thus, CB is involved in BCG-induced apoptosis of TCC lines, using at least in part the mitochondrial pathway.


Assuntos
Apoptose/fisiologia , Vacina BCG/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Catepsina B/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Vacina BCG/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Caspase 9/metabolismo , Ativação Enzimática , Humanos , Precursores de Proteínas/metabolismo , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...